Translation for "yhteenlaskun" to english
Yhteenlaskun
noun
Translation examples
noun
Erityisesti kokonaisluvut Z muodostavat Abelin ryhmän yhteenlaskun suhteen, kuten myös kokonaisluvut modulo n, Z/nZ.
Thus the integers, Z, form an abelian group under addition, as do the integers modulo n, Z/nZ.
Notaation idea liittyy siihen tosiasiaan, että kertolasku voidaan käsitellä iteroituina yhteenlaskuina ja potenssiinkorotus iteroituina kertolaskuina.
The idea is based on the fact that multiplication can be viewed as iterated addition and exponentiation as iterated multiplication.
Hän jakoi vektorianalyysin kolmeen osaan: »Ensimmäisenä se, mikä koskee vektorien yhteenlaskua sekä piste- ja ristituloa.
He divided vector analysis into three parts: First, that which concerns addition and the scalar and vector products of vectors.
Näiden ekvivalenssiluokkien eli tekijäavaruuden alkioiden yhteenlasku ja skalaarilla kertominen määritellään tällöin seuraavasti:* α = for all α ∈ K, and  +  = .
Scalar multiplication and addition are defined on the equivalence classes by α = for all α ∈ K, and  +  = .
Niitä voidaan laskea yhteen tavalliseen tapaan: A + B = ( A 0 , A 1 , A 2 , A 3 ) + ( B 0 , B 1 , B 2 , B 3 ) = ( A 0 + B 0 , A 1 + B 1 , A 2 + B 2 , A 3 + B 3 ) {\displaystyle \mathbf {A} +\mathbf {B} =(A^{0},A^{1},A^{2},A^{3})+(B^{0},B^{1},B^{2},B^{3})=(A^{0}+B^{0},A^{1}+B^{1},A^{2}+B^{2},A^{3}+B^{3})} ja ne voidaan kertoa skalaarilla λ komponenteittain: λ A = λ ( A 0 , A 1 , A 2 , A 3 ) = ( λ A 0 , λ A 1 , λ A 2 , λ A 3 ) {\displaystyle \lambda \mathbf {A} =\lambda (A^{0},A^{1},A^{2},A^{3})=(\lambda A^{0},\lambda A^{1},\lambda A^{2},\lambda A^{3})} Samoin vähennyslasku on nelivektoreillakin yhteenlaskun käänteistoimitus, joka määritellään komponenteittain: A + ( − 1 ) B = ( A 0 , A 1 , A 2 , A 3 ) + ( − 1 ) ( B 0 , B 1 , B 2 , B 3 ) = ( A 0 − B 0 , A 1 − B 1 , A 2 − B 2 , A 3 − B 3 ) {\displaystyle \mathbf {A} +(-1)\mathbf {B} =(A^{0},A^{1},A^{2},A^{3})+(-1)(B^{0},B^{1},B^{2},B^{3})=(A^{0}-B^{0},A^{1}-B^{1},A^{2}-B^{2},A^{3}-B^{3})} Katso myös: Intervalli (fysiikka) Kahden nelivektorin A ja B sisätulo eli skalaaritulo määritellään Einsteinin notaatiota käyttäen seuraavasti: A ⋅ B = A μ η μ ν B ν {\displaystyle \mathbf {A} \cdot \mathbf {B} =A^{\mu }\eta _{\mu \nu }B^{\nu }} missä η {\displaystyle \eta } on Minkowskin metriikka.
They can be added in the usual entrywise way: A + B = ( A 0 , A 1 , A 2 , A 3 ) + ( B 0 , B 1 , B 2 , B 3 ) = ( A 0 + B 0 , A 1 + B 1 , A 2 + B 2 , A 3 + B 3 ) {\displaystyle \mathbf {A} +\mathbf {B} =(A^{0},A^{1},A^{2},A^{3})+(B^{0},B^{1},B^{2},B^{3})=(A^{0}+B^{0},A^{1}+B^{1},A^{2}+B^{2},A^{3}+B^{3})} and similarly scalar multiplication by a scalar λ is defined entrywise by: λ A = λ ( A 0 , A 1 , A 2 , A 3 ) = ( λ A 0 , λ A 1 , λ A 2 , λ A 3 ) {\displaystyle \lambda \mathbf {A} =\lambda (A^{0},A^{1},A^{2},A^{3})=(\lambda A^{0},\lambda A^{1},\lambda A^{2},\lambda A^{3})} Then subtraction is the inverse operation of addition, defined entrywise by: A + ( − 1 ) B = ( A 0 , A 1 , A 2 , A 3 ) + ( − 1 ) ( B 0 , B 1 , B 2 , B 3 ) = ( A 0 − B 0 , A 1 − B 1 , A 2 − B 2 , A 3 − B 3 ) {\displaystyle \mathbf {A} +(-1)\mathbf {B} =(A^{0},A^{1},A^{2},A^{3})+(-1)(B^{0},B^{1},B^{2},B^{3})=(A^{0}-B^{0},A^{1}-B^{1},A^{2}-B^{2},A^{3}-B^{3})} Applying the Minkowski tensor ημν to two four-vectors A and B, writing the result in dot product notation, we have, using Einstein notation: A ⋅ B = A μ η μ ν B ν {\displaystyle \mathbf {A} \cdot \mathbf {B} =A^{\mu }\eta _{\mu \nu }B^{\nu }} It is convenient to rewrite the definition in matrix form: A ⋅ B = ( A 0 A 1 A 2 A 3 ) ( η 00 η 01 η 02 η 03 η 10 η 11 η 12 η 13 η 20 η 21 η 22 η 23 η 30 η 31 η 32 η 33 ) ( B 0 B 1 B 2 B 3 ) {\displaystyle \mathbf {A\cdot B} ={\begin{pmatrix}A^{0}&A^{1}&A^{2}&A^{3}\end{pmatrix}}{\begin{pmatrix}\eta _{00}&\eta _{01}&\eta _{02}&\eta _{03}\\\eta _{10}&\eta _{11}&\eta _{12}&\eta _{13}\\\eta _{20}&\eta _{21}&\eta _{22}&\eta _{23}\\\eta _{30}&\eta _{31}&\eta _{32}&\eta _{33}\end{pmatrix}}{\begin{pmatrix}B^{0}\\B^{1}\\B^{2}\\B^{3}\end{pmatrix}}} in which case ημν above is the entry in row μ and column ν of the Minkowski metric as a square matrix.
How many English words do you know?
Test your English vocabulary size, and measure how many words you know.
Online Test