Translation for "missä s" to english
Missä s
Translation examples
missä s on entropia baryonia kohti ja T absoluuttinen lämpötila aineen paikallisessa lepokoordinaatistossa.
where s is the entropy per baryon, and T the absolute temperature, in the local rest frame of the fluid.
Vaihtoehtoisesti luonnolliset luvut voidaan määritellä Peanon aksioomien avulla, jolloin luku 3 on sss0, missä s merkitsee "seuraaja"-funktiota (toisin sanoen 3 on luvun 0 kolmas seuraaja).
Alternatively, in Peano Arithmetic, the number 3 is represented as sss0, where s is the "successor" function (i.e., 3 is the third successor of 0).
Hän päätteli, että vetovoima on verrannollinen lausekkeeseen S ρ v {\displaystyle S{\sqrt {\rho }}v} , missä S on maan molekulaarinen pinta-ala, v hiukkasten nopeus ja ρ väliaineen tiheys.
He concluded that the attraction is proportional to S ρ v {\displaystyle S{\sqrt {\rho }}v} , where S is earth's molecular surface area, v is the velocity of the particles, and ρ is the density of the medium.
Entropiaa vastaava nelivektori, nelientropia, määritellään: s = s S + Q T {\displaystyle \mathbf {s} =s\mathbf {S} +{\frac {\mathbf {Q} }{T}}} missä s on entropia baryonia kohti ja T absoluuttinen lämpötila aineen paikallisessa lepo­koordinaatistossa.
The four-entropy vector is defined by: s = s S + Q T {\displaystyle \mathbf {s} =s\mathbf {S} +{\frac {\mathbf {Q} }{T}}} where s is the entropy per baryon, and T the absolute temperature, in the local rest frame of the fluid.
S voidaan laskea myös Heronin kaavan avulla: S = s ( s − a ) ( s − b ) ( s − c ) {\displaystyle S={\sqrt {s(s-a)(s-b)(s-c)}}} missä s = ½ (a + b + c) eli puolet kolmion ympärysmitasta.
By Heron's formula: T = s ( s − a ) ( s − b ) ( s − c ) {\displaystyle T={\sqrt {s(s-a)(s-b)(s-c)}}} where s = a + b + c 2 {\displaystyle s={\tfrac {a+b+c}{2}}} is the semiperimeter, or half of the triangle's perimeter.
Nestepisaran leviäminen voidaan määritellä seuraavasti: S = γ s − γ l − γ s - l {\displaystyle S=\gamma _{s}-\gamma _{l}-\gamma _{\text{s - l}}} missä S {\displaystyle S} on leviämisparametri, γ s {\displaystyle \gamma _{s}} on kiinteän pinnan pintaenergia, γ l {\displaystyle \gamma _{l}} on nesteen pintaenergia ja γ s - l {\displaystyle \gamma _{\text{s - l}}} on kiinteän pinnan ja nesteen rajapinnan interfasiaalinen energia.
The spreading parameter can be used to mathematically determine this: S = γ s − γ l − γ s-l {\displaystyle S=\gamma _{\text{s}}-\gamma _{\text{l}}-\gamma _{\text{s-l}}} where S {\displaystyle S} is the spreading parameter, γ s {\displaystyle \gamma _{\text{s}}} the surface energy of the substrate, γ l {\displaystyle \gamma _{\text{l}}} the surface energy of the liquid, and γ s-l {\displaystyle \gamma _{\text{s-l}}} the interfacial energy between the substrate and the liquid.
Saapuvaan valoaaltoon liittyvä sähkökenttä on E e i ( k z − ω t ) = E p ^ e i ( k z − ω t ) = E ( cos ⁡ θ f ^ + sin ⁡ θ s ^ ) e i ( k z − ω t ) , {\displaystyle \mathbf {E} \,\mathrm {e} ^{i(kz-\omega t)}=E\,\mathbf {\hat {p}} \,\mathrm {e} ^{i(kz-\omega t)}=E(\cos \theta \,\mathbf {\hat {f}} +\sin \theta \,\mathbf {\hat {s}} )\mathrm {e} ^{i(kz-\omega t)},} missä s ^ {\displaystyle \mathbf {\hat {s}} } on aaltolevyn hitaalla akselilla.
The electric field of the incident wave is E e i ( k z − ω t ) = E p ^ e i ( k z − ω t ) = E ( cos ⁡ θ f ^ + sin ⁡ θ s ^ ) e i ( k z − ω t ) , {\displaystyle \mathbf {E} \,\mathrm {e} ^{i(kz-\omega t)}=E\,\mathbf {\hat {p}} \,\mathrm {e} ^{i(kz-\omega t)}=E(\cos \theta \,\mathbf {\hat {f}} +\sin \theta \,\mathbf {\hat {s}} )\mathrm {e} ^{i(kz-\omega t)},} where s ^ {\displaystyle \mathbf {\hat {s}} } lies along the waveplate's slow axis.
Klassisen mekaniikan Hamiltonin–Jacobin muotoilussa nopeuden ilmaisee lauseke v ( x , t ) = ∇ S ( x , t ) m {\displaystyle v(x,t)={\frac {\nabla S(x,t)}{m}}} , missä S ( x , t ) {\displaystyle S(x,t)} on Hamiltonin–Jacobin yhtälön ratkaisu − ∂ S ∂ t = ( ∇ S ) 2 2 m + V ( 2 ) {\displaystyle -{\frac {\partial S}{\partial t}}={\frac {\left(\nabla S\right)^{2}}{2m}}+V\quad (2)} Yhtälöt ( 1 ) {\displaystyle (1)} ja ( 2 ) {\displaystyle (2)} voidaan yhdistää yhdeksi kompleksiseksi yhtälöksi ottamalla käyttöön kompleksinen funktio ψ = ρ e i S ℏ {\displaystyle \psi ={\sqrt {\rho }}e^{\frac {iS}{\hbar }}} .
In the Hamilton–Jacobi formulation of classical mechanics, velocity is given by v ( x , t ) = ∇ S ( x , t ) m {\displaystyle v(x,t)={\frac {\nabla S(x,t)}{m}}} where S ( x , t ) {\displaystyle S(x,t)} is a solution of the Hamilton-Jacobi equation − ∂ S ∂ t = ( ∇ S ) 2 2 m + V ~ ( 2 ) {\displaystyle -{\frac {\partial S}{\partial t}}={\frac {\left(\nabla S\right)^{2}}{2m}}+{\tilde {V}}\quad (2)} ( 1 ) {\displaystyle (1)} and ( 2 ) {\displaystyle (2)} can be combined into a single complex equation by introducing the complex function ψ = ρ e i S ℏ {\displaystyle \psi ={\sqrt {\rho }}e^{\frac {iS}{\hbar }}} , then the two equations are equivalent to i ℏ ∂ ψ ∂ t = ( − ℏ 2 2 m ∇ 2 + V ~ − Q ) ψ {\displaystyle i\hbar {\frac {\partial \psi }{\partial t}}=\left(-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}+{\tilde {V}}-Q\right)\psi \quad } with Q = − ℏ 2 2 m ∇ 2 ρ ρ . {\displaystyle Q=-{\frac {\hbar ^{2}}{2m}}{\frac {\nabla ^{2}{\sqrt {\rho }}}{\sqrt {\rho }}}.} The time dependent Schrödinger equation is obtained if we start with V ~ = V + Q {\displaystyle {\tilde {V}}=V+Q} , the usual potential with an extra quantum potential Q {\displaystyle Q} .
How many English words do you know?
Test your English vocabulary size, and measure how many words you know.
Online Test