Translation for "kätevään" to english
Kätevään
Translation examples
Lyhyytensä ansiosta ne olivat erityisen käteviä kääntöpöydillä.
The exits were fitted with particularly convenient handrails.
Tätä kätevää Kristuksen virkojen kolminkertaista jakoa käyttivät molempien tunnustuksien teologit 1600-luvun aikana.
This convenient threefold division of the office of Christ was used by the theologians of both confessions during the seventeenth century.
Duodesimaalijärjestelmä on tästä syystä kätevämpi lukujärjestelmä murtolukujen laskemisessa kuin esimerkiksi kymmenjärjestelmässä, vigesimaalijärjestelmässä, binaarijärjestelmässä tai heksadesimaalijärjestelmässä.
This all makes it a more convenient number system for computing fractions than most other number systems in common use, such as the decimal, vigesimal, binary, octal and hexadecimal systems.
Tien pääosa kulkee Nagara-sillalta Chūsetsu-sillalle ja toimii kätevänä reittinä urheilutapahtumille, kuten Terry Fox -juoksulle ja Nagaragawan kansainväliselle rullaluistelukilpailulle.
This road primarily stretches from Nagara Bridge to Chusetsu Bridge, providing a convenient course for events such as the Terry Fox Run, the Nagaragawa International Inline Skating Competition, and the Gifu Seiryu Half Marathon.
Asakawan tutkimushankkeisiin liittyy Braille- asiakirjoja käsittelevä tekstinkäsittelyohjelma, Braille dokumenteille kehitetty digitaalinen kirjasto, Netscape-selaimen laajennus, joka muuntaa tekstin puheeksi ja tarjoaa kätevämmän verkon navigointimekanismin sokeille ja kehitysjärjestelmä, joka mahdollistaa että sokeuden kokemisen websuunnittelijoille .
Asakawa's research projects have included developing a word processor for Braille documents, developing a digital library for Braille documents, developing a Netscape browser plug-in that converted text to speech and provided a more convenient web navigation mechanism for blind people, and developing a system that would allow sighted web designers to experience the web as blind people.
Jos rotaatio tapahtuu vain z-akselin ympäri, Lorentzin matriisin paikan­luontoinen osa yksin­kertaistuu rotaatiomatriisiksi z-akselin ympäri: ( A ′ 0 A ′ 1 A ′ 2 A ′ 3 ) = ( 1 0 0 0 0 cos ⁡ θ − sin ⁡ θ 0 0 sin ⁡ θ cos ⁡ θ 0 0 0 0 1 ) ( A 0 A 1 A 2 A 3 )   . {\displaystyle {\begin{pmatrix}{A'}^{0}\\{A'}^{1}\\{A'}^{2}\\{A'}^{3}\end{pmatrix}}={\begin{pmatrix}1&0&0&0\\0&\cos \theta &-\sin \theta &0\\0&\sin \theta &\cos \theta &0\\0&0&0&1\\\end{pmatrix}}{\begin{pmatrix}A^{0}\\A^{1}\\A^{2}\\A^{3}\end{pmatrix}}\ .} Kun kaksi vertailu­järjestelmää liikkuu toistensa suhteen tasaisella nopeudella v (tässä tarkoitetaan tavan­omaista nopeutta kolmi­ulotteisessa avaruudessa, ei jäljempänä määriteltävää neli­nopeutta), on kätevää käyttää suhteellisen nopeuden yksikkönä valon­nopeutta c seuraavasti: β = ( β 1 , β 2 , β 3 ) = 1 c ( v 1 , v 2 , v 3 ) = 1 c v . {\displaystyle {\boldsymbol {\beta }}=(\beta _{1},\,\beta _{2},\,\beta _{3})={\frac {1}{c}}(v_{1},\,v_{2},\,v_{3})={\frac {1}{c}}\mathbf {v} \,.} Täten kun rotaatiota ei ole eli molempien vertailu­järjestelmien koordinaatti­akselit ovat saman­suuntaiset, matriisin Λ komponentit ovat: Λ 00 = γ , Λ 0 i = Λ i 0 = − γ β i , Λ i j = Λ j i = ( γ − 1 ) β i β j β 2 + δ i j = ( γ − 1 ) v i v j v 2 + δ i j , {\displaystyle {\begin{aligned}\Lambda _{00}&=\gamma ,\\\Lambda _{0i}&=\Lambda _{i0}=-\gamma \beta _{i},\\\Lambda _{ij}&=\Lambda _{ji}=(\gamma -1){\dfrac {\beta _{i}\beta _{j}}{\beta ^{2}}}+\delta _{ij}=(\gamma -1){\dfrac {v_{i}v_{j}}{v^{2}}}+\delta _{ij},\\\end{aligned}}\,\!} missä γ {\displaystyle \gamma } on Lorentzin tekijä γ = 1 1 − β ⋅ β , {\displaystyle \gamma ={\frac {1}{\sqrt {1-{\boldsymbol {\beta }}\cdot {\boldsymbol {\beta }}}}}\,,} ja δij on Kroneckerin delta.
For the case of rotations about the z-axis only, the spacelike part of the Lorentz matrix reduces to the rotation matrix about the z-axis: ( A ′ 0 A ′ 1 A ′ 2 A ′ 3 ) = ( 1 0 0 0 0 cos ⁡ θ − sin ⁡ θ 0 0 sin ⁡ θ cos ⁡ θ 0 0 0 0 1 ) ( A 0 A 1 A 2 A 3 )   . {\displaystyle {\begin{pmatrix}{A'}^{0}\\{A'}^{1}\\{A'}^{2}\\{A'}^{3}\end{pmatrix}}={\begin{pmatrix}1&0&0&0\\0&\cos \theta &-\sin \theta &0\\0&\sin \theta &\cos \theta &0\\0&0&0&1\\\end{pmatrix}}{\begin{pmatrix}A^{0}\\A^{1}\\A^{2}\\A^{3}\end{pmatrix}}\ .} For two frames moving at constant relative three-velocity v (not four-velocity, see below), it is convenient to denote and define the relative velocity in units of c by: β = ( β 1 , β 2 , β 3 ) = 1 c ( v 1 , v 2 , v 3 ) = 1 c v . {\displaystyle {\boldsymbol {\beta }}=(\beta _{1},\,\beta _{2},\,\beta _{3})={\frac {1}{c}}(v_{1},\,v_{2},\,v_{3})={\frac {1}{c}}\mathbf {v} \,.} Then without rotations, the matrix Λ has components given by: Λ 00 = γ , Λ 0 i = Λ i 0 = − γ β i , Λ i j = Λ j i = ( γ − 1 ) β i β j β 2 + δ i j = ( γ − 1 ) v i v j v 2 + δ i j , {\displaystyle {\begin{aligned}\Lambda _{00}&=\gamma ,\\\Lambda _{0i}&=\Lambda _{i0}=-\gamma \beta _{i},\\\Lambda _{ij}&=\Lambda _{ji}=(\gamma -1){\dfrac {\beta _{i}\beta _{j}}{\beta ^{2}}}+\delta _{ij}=(\gamma -1){\dfrac {v_{i}v_{j}}{v^{2}}}+\delta _{ij},\\\end{aligned}}\,\!} where the Lorentz factor is defined by: γ = 1 1 − β ⋅ β , {\displaystyle \gamma ={\frac {1}{\sqrt {1-{\boldsymbol {\beta }}\cdot {\boldsymbol {\beta }}}}}\,,} and δij is the Kronecker delta.
How many English words do you know?
Test your English vocabulary size, and measure how many words you know.
Online Test