Translation for "derivoinnissa" to english
Translation examples
Matemaattisesti tämä oletus voidaan kirjoittaa seuraavasti: ∫ Ω ′ L ( α A , α A , ν , ξ μ ) d 4 ξ − ∫ Ω L ( ϕ A , ϕ A , ν , x μ ) d 4 x = 0 {\displaystyle \int _{\Omega ^{\prime }}L\left(\alpha ^{A},{\alpha ^{A}}_{,\nu },\xi ^{\mu }\right)d^{4}\xi -\int _{\Omega }L\left(\phi ^{A},{\phi ^{A}}_{,\nu },x^{\mu }\right)d^{4}x=0} missä muuttujien jälkeen yläpuolelle kirjoitetut pilkut tarkoittavat osittaisderivaattoja niiden koordinaattien suhteen, jotka seuraavat pilkun jälkeen, toisin sanoen ϕ A , σ = ∂ ϕ A ∂ x σ . {\displaystyle {\phi ^{A}}_{,\sigma }={\frac {\partial \phi ^{A}}{\partial x^{\sigma }}}\,.} Koska ξ on pelkkä integroimisvakio ja koska rajan Ω muutos oletettiin infinitesimaaliseksi, nämä kaksi integraalia voidaan yhdistää divergenssilauseen neliulotteisen version mukaisesti seuraavaan muotoon: ∫ Ω { + ∂ ∂ x σ } d 4 x = 0 . {\displaystyle \int _{\Omega }\left\{\left+{\frac {\partial }{\partial x^{\sigma }}}\left\right\}d^{4}x=0\,.} Lagrangen funktioiden erotus voidaan kirjoittaa ensimmäisessä kertaluvuissa infinitesimaalisilla muutoksilla: = ∂ L ∂ ϕ A δ ¯ ϕ A + ∂ L ∂ ϕ A , σ δ ¯ ϕ A , σ . {\displaystyle \left={\frac {\partial L}{\partial \phi ^{A}}}{\bar {\delta }}\phi ^{A}+{\frac {\partial L}{\partial {\phi ^{A}}_{,\sigma }}}{\bar {\delta }}{\phi ^{A}}_{,\sigma }\,.} Koska nämä muutokset kuitenkin on määritelty samassa edellä selityssä pisteessä, muutokset ja derivoinnit voidaan suorittaa myös päinvastaisessa järjestyksessä; ne kommutoivat: δ ¯ ϕ A , σ = δ ¯ ∂ ϕ A ∂ x σ = ∂ ∂ x σ ( δ ¯ ϕ A ) . {\displaystyle {\bar {\delta }}{\phi ^{A}}_{,\sigma }={\bar {\delta }}{\frac {\partial \phi ^{A}}{\partial x^{\sigma }}}={\frac {\partial }{\partial x^{\sigma }}}\left({\bar {\delta }}\phi ^{A}\right)\,.} Käyttämällä Eulerin-Lagrangen kenttäyhtälöä ∂ ∂ x σ ( ∂ L ∂ ϕ A , σ ) = ∂ L ∂ ϕ A {\displaystyle {\frac {\partial }{\partial x^{\sigma }}}\left({\frac {\partial L}{\partial {\phi ^{A}}_{,\sigma }}}\right)={\frac {\partial L}{\partial \phi ^{A}}}} Lagrangen funktioiden erotus voidaan kirjoittaa yksinkertaisesti muotoon = ∂ ∂ x σ ( ∂ L ∂ ϕ A , σ ) δ ¯ ϕ A + ∂ L ∂ ϕ A , σ δ ¯ ϕ A , σ = ∂ ∂ x σ ( ∂ L ∂ ϕ A , σ δ ¯ ϕ A ) . {\displaystyle \left={\frac {\partial }{\partial x^{\sigma }}}\left({\frac {\partial L}{\partial {\phi ^{A}}_{,\sigma }}}\right){\bar {\delta }}\phi ^{A}+{\frac {\partial L}{\partial {\phi ^{A}}_{,\sigma }}}{\bar {\delta }}{\phi ^{A}}_{,\sigma }={\frac {\partial }{\partial x^{\sigma }}}\left({\frac {\partial L}{\partial {\phi ^{A}}_{,\sigma }}}{\bar {\delta }}\phi ^{A}\right)\,.} Näin ollen aktion muutokseksi saadaan ∫ Ω ∂ ∂ x σ { ∂ L ∂ ϕ A , σ δ ¯ ϕ A + L ( ϕ A , ϕ A , ν , x μ ) δ x σ } d 4 x = 0 . {\displaystyle \int _{\Omega }{\frac {\partial }{\partial x^{\sigma }}}\left\{{\frac {\partial L}{\partial {\phi ^{A}}_{,\sigma }}}{\bar {\delta }}\phi ^{A}+L\left(\phi ^{A},{\phi ^{A}}_{,\nu },x^{\mu }\right)\delta x^{\sigma }\right\}d^{4}x=0\,.} Koska tämä pätee missä tahansa alueessa Ω, integrandin on oltava nolla ∂ ∂ x σ { ∂ L ∂ ϕ A , σ δ ¯ ϕ A + L ( ϕ A , ϕ A , ν , x μ ) δ x σ } = 0 . {\displaystyle {\frac {\partial }{\partial x^{\sigma }}}\left\{{\frac {\partial L}{\partial {\phi ^{A}}_{,\sigma }}}{\bar {\delta }}\phi ^{A}+L\left(\phi ^{A},{\phi ^{A}}_{,\nu },x^{\mu }\right)\delta x^{\sigma }\right\}=0\,.} .
Expressed mathematically, this assumption may be written as ∫ Ω ′ L ( α A , α A , ν , ξ μ ) d 4 ξ − ∫ Ω L ( φ A , φ A , ν , x μ ) d 4 x = 0 {\displaystyle \int _{\Omega ^{\prime }}L\left(\alpha ^{A},{\alpha ^{A}}_{,\nu },\xi ^{\mu }\right)d^{4}\xi -\int _{\Omega }L\left(\varphi ^{A},{\varphi ^{A}}_{,\nu },x^{\mu }\right)d^{4}x=0} where the comma subscript indicates a partial derivative with respect to the coordinate(s) that follows the comma, e.g. φ A , σ = ∂ φ A ∂ x σ . {\displaystyle {\varphi ^{A}}_{,\sigma }={\frac {\partial \varphi ^{A}}{\partial x^{\sigma }}}\,.} Since ξ is a dummy variable of integration, and since the change in the boundary Ω is infinitesimal by assumption, the two integrals may be combined using the four-dimensional version of the divergence theorem into the following form ∫ Ω { + ∂ ∂ x σ } d 4 x = 0 . {\displaystyle \int _{\Omega }\left\{\left+{\frac {\partial }{\partial x^{\sigma }}}\left\right\}d^{4}x=0\,.} The difference in Lagrangians can be written to first-order in the infinitesimal variations as = ∂ L ∂ φ A δ ¯ φ A + ∂ L ∂ φ A , σ δ ¯ φ A , σ . {\displaystyle \left={\frac {\partial L}{\partial \varphi ^{A}}}{\bar {\delta }}\varphi ^{A}+{\frac {\partial L}{\partial {\varphi ^{A}}_{,\sigma }}}{\bar {\delta }}{\varphi ^{A}}_{,\sigma }\,.} However, because the variations are defined at the same point as described above, the variation and the derivative can be done in reverse order; they commute δ ¯ φ A , σ = δ ¯ ∂ φ A ∂ x σ = ∂ ∂ x σ ( δ ¯ φ A ) . {\displaystyle {\bar {\delta }}{\varphi ^{A}}_{,\sigma }={\bar {\delta }}{\frac {\partial \varphi ^{A}}{\partial x^{\sigma }}}={\frac {\partial }{\partial x^{\sigma }}}({\bar {\delta }}\varphi ^{A})\,.} Using the Euler–Lagrange field equations ∂ ∂ x σ ( ∂ L ∂ φ A , σ ) = ∂ L ∂ φ A {\displaystyle {\frac {\partial }{\partial x^{\sigma }}}\left({\frac {\partial L}{\partial {\varphi ^{A}}_{,\sigma }}}\right)={\frac {\partial L}{\partial \varphi ^{A}}}} the difference in Lagrangians can be written neatly as = ∂ ∂ x σ ( ∂ L ∂ φ A , σ ) δ ¯ φ A + ∂ L ∂ φ A , σ δ ¯ φ A , σ = ∂ ∂ x σ ( ∂ L ∂ φ A , σ δ ¯ φ A ) . {\displaystyle {\begin{aligned}&\left\\={}&{\frac {\partial }{\partial x^{\sigma }}}\left({\frac {\partial L}{\partial {\varphi ^{A}}_{,\sigma }}}\right){\bar {\delta }}\varphi ^{A}+{\frac {\partial L}{\partial {\varphi ^{A}}_{,\sigma }}}{\bar {\delta }}{\varphi ^{A}}_{,\sigma }={\frac {\partial }{\partial x^{\sigma }}}\left({\frac {\partial L}{\partial {\varphi ^{A}}_{,\sigma }}}{\bar {\delta }}\varphi ^{A}\right).\end{aligned}}} Thus, the change in the action can be written as ∫ Ω ∂ ∂ x σ { ∂ L ∂ φ A , σ δ ¯ φ A + L ( φ A , φ A , ν , x μ ) δ x σ } d 4 x = 0 . {\displaystyle \int _{\Omega }{\frac {\partial }{\partial x^{\sigma }}}\left\{{\frac {\partial L}{\partial {\varphi ^{A}}_{,\sigma }}}{\bar {\delta }}\varphi ^{A}+L\left(\varphi ^{A},{\varphi ^{A}}_{,\nu },x^{\mu }\right)\delta x^{\sigma }\right\}d^{4}x=0\,.} Since this holds for any region Ω, the integrand must be zero ∂ ∂ x σ { ∂ L ∂ φ A , σ δ ¯ φ A + L ( φ A , φ A , ν , x μ ) δ x σ } = 0 . {\displaystyle {\frac {\partial }{\partial x^{\sigma }}}\left\{{\frac {\partial L}{\partial {\varphi ^{A}}_{,\sigma }}}{\bar {\delta }}\varphi ^{A}+L\left(\varphi ^{A},{\varphi ^{A}}_{,\nu },x^{\mu }\right)\delta x^{\sigma }\right\}=0\,.} For any combination of the various symmetry transformations, the perturbation can be written δ x μ = ε X μ {\displaystyle \delta x^{\mu }=\varepsilon X^{\mu }} δ φ A = ε Ψ A = δ ¯ φ A + ε L X φ A {\displaystyle \delta \varphi ^{A}=\varepsilon \Psi ^{A}={\bar {\delta }}\varphi ^{A}+\varepsilon {\mathcal {L}}_{X}\varphi ^{A}} where L X φ A {\displaystyle {\mathcal {L}}_{X}\varphi ^{A}} is the Lie derivative of φA in the Xμ direction.
Seuraavassa on muutama esimerkki derivoinnin järjestämiseksi ja osittaisderivaattojen merkitsemisistä.
There are several steps involved in deriving and calculating an EPI.
How many English words do you know?
Test your English vocabulary size, and measure how many words you know.
Online Test