Translation for "wronskian" to finnish
Translation examples
More generally, for n real- or complex-valued functions f1, . . ., fn, which are n – 1 times differentiable on an interval I, the Wronskian W(f1, . . ., fn) as a function on I is defined by
Yleisemmin n:lle reaaliluku- tai kompleksilukukertoimiselle funktiolle f1,..., fn, jotka ovat n − 1 kertaa derivoituvia välillä I, muodostetaan Wronskin determinantti W(f1,..., fn) seuraavasti
The Wronskian of two differentiable functions f  and g is W(f, g) = f g′ – g f ′.
Kahden funktion f ja g Wronskin determinantti on W(f, g) = fg′ – gf ′.
There are several extra conditions which ensure that the vanishing of the Wronskian in an interval implies linear dependence.
Niinpä tarvitaankin muutamia lisäehtoja sille, että Wronskin determinantin arvo 0 jollain tietyllä välillä tarkoittaisi lineaarista riippuvuutta.
Wolsson (1989a) gave a more general condition that together with the vanishing of the Wronskian implies linear dependence.
Lisäksi Wolsson julkaisi vuonna 1989 yleisemmän määritelmän sille, millä tavoin Wronskin determinantin arvo nolla ilmaisee lineaarista riippuvuutta.
If the functions fi are linearly dependent, then so are the columns of the Wronskian as differentiation is a linear operation, so the Wronskian vanishes.
Jos funktiot fi ovat lineaarisesti riippuvia, niin tällöin myös niistä muodostetun Wronskin determinantin sarakkeiden täytyy olla, sillä derivointi on lineaarinen operaatio ja tällöin determinantin arvoksi tulee nolla.
A common misconception is that W = 0 everywhere implies linear dependence, but Peano (1889) pointed out that the functions x2 and |x|x have continuous derivatives and their Wronskian vanishes everywhere, yet they are not linearly dependent in any neighborhood of 0.
Giuseppe Peano painotti kuitenkin jo varhain (1889), että on olemassa funktioita kuten x2 ja |x|x, joilla on jatkuvat derivaatat ja joiden Wronskin determinanttien arvot ovat 0 kaikilla x:n arvoilla, ja silti niiden muodostama funktiojono ei ole lineaarisesti riippuva.
More generally, for n real- or complex-valued functions f1, . . . , fn, which are n – 1 times differentiable on an interval I, the Wronskian W(f1, . . . , fn) as a function on I is defined by W ( f 1 , … , f n ) ( x ) = | f 1 ( x ) f 2 ( x ) ⋯ f n ( x ) f 1 ′ ( x ) f 2 ′ ( x ) ⋯ f n ′ ( x ) ⋮ ⋮ ⋱ ⋮ f 1 ( n − 1 ) ( x ) f 2 ( n − 1 ) ( x ) ⋯ f n ( n − 1 ) ( x ) | , x ∈ I . {\displaystyle W(f_{1},\ldots ,f_{n})(x)={\begin{vmatrix}f_{1}(x)&f_{2}(x)&\cdots &f_{n}(x)\\f_{1}'(x)&f_{2}'(x)&\cdots &f_{n}'(x)\\\vdots &\vdots &\ddots &\vdots \\f_{1}^{(n-1)}(x)&f_{2}^{(n-1)}(x)&\cdots &f_{n}^{(n-1)}(x)\end{vmatrix}},\qquad x\in I.} That is, it is the determinant of the matrix constructed by placing the functions in the first row, the first derivative of each function in the second row, and so on through the (n – 1)th derivative, thus forming a square matrix sometimes called a fundamental matrix.
Yleisemmin n:lle reaaliluku- tai kompleksilukukertoimiselle funktiolle f1, ..., fn, jotka ovat n − 1 kertaa derivoituvia välillä I, muodostetaan Wronskin determinantti W(f1, ..., fn) seuraavasti W ( f 1 , … , f n ) ( x ) = | f 1 ( x ) f 2 ( x ) ⋯ f n ( x ) f 1 ′ ( x ) f 2 ′ ( x ) ⋯ f n ′ ( x ) ⋮ ⋮ ⋱ ⋮ f 1 ( n − 1 ) ( x ) f 2 ( n − 1 ) ( x ) ⋯ f n ( n − 1 ) ( x ) | , x ∈ I . {\displaystyle W(f_{1},\ldots ,f_{n})(x)={\begin{vmatrix}f_{1}(x)&f_{2}(x)&\cdots &f_{n}(x)\\f_{1}'(x)&f_{2}'(x)&\cdots &f_{n}'(x)\\\vdots &\vdots &\ddots &\vdots \\f_{1}^{(n-1)}(x)&f_{2}^{(n-1)}(x)&\cdots &f_{n}^{(n-1)}(x)\end{vmatrix}},\qquad x\in I.} Toisin sanoen Wronskin determinanttia muodostettaessa kootaan aluksi matriisi, jossa funktiot järjestetään matriisin ensimmäiseksi riviksi, kukin omaksi alkiokseen.
How many English words do you know?
Test your English vocabulary size, and measure how many words you know.
Online Test