Translation for "binomial coefficients" to finnish
Translation examples
The final expression follows from the previous one by the symmetry of x and y in the first expression, and by comparison it follows that the sequence of binomial coefficients in the formula is symmetrical.
Viimeinen lauseke seuraa edellisestä ja on symmetrinen x:n ja y:n ensimmäisen lausekkeen kanssa, ja verrattaessa kertoimiin huomataan, että binomikertoimien jono kaavassa on myös symmetrinen.
In mathematics, Pascal's triangle is a triangular array of the binomial coefficients.
Pascalin kolmio on matematiikassa binomikertoimista kolmion muotoon koottu järjestelmä.
Using summation notation, it can be written as ( x + y ) n = ∑ k = 0 n ( n k ) x n − k y k = ∑ k = 0 n ( n k ) x k y n − k . {\displaystyle (x+y)^{n}=\sum _{k=0}^{n}{n \choose k}x^{n-k}y^{k}=\sum _{k=0}^{n}{n \choose k}x^{k}y^{n-k}.} The final expression follows from the previous one by the symmetry of x and y in the first expression, and by comparison it follows that the sequence of binomial coefficients in the formula is symmetrical.
Käytettäessä summamerkintää se voidaan kirjoittaa ( x + y ) n = ∑ k = 0 n ( n k ) x n − k y k = ∑ k = 0 n ( n k ) x k y n − k . {\displaystyle (x+y)^{n}=\sum _{k=0}^{n}{n \choose k}x^{n-k}y^{k}=\sum _{k=0}^{n}{n \choose k}x^{k}y^{n-k}.} Viimeinen lauseke seuraa edellisestä ja on symmetrinen x :n ja y :n ensimmäisen lausekkeen kanssa, ja verrattaessa kertoimiin huomataan, että binomikertoimien jono kaavassa on myös symmetrinen.
The density D {\displaystyle D} of a network is defined as a ratio of the number of edges E {\displaystyle E} to the number of possible edges in a network with N {\displaystyle N} nodes, given (in the case of simple graphs) by the binomial coefficient ( N 2 ) {\displaystyle {\tbinom {N}{2}}} , giving D = E − ( N − 1 ) E m a x − ( N − 1 ) = 2 ( E − N + 1 ) N ( N − 3 ) + 2 {\displaystyle D={\frac {E-(N-1)}{Emax-(N-1)}}={\frac {2(E-N+1)}{N(N-3)+2}}} Another possible equation is D = T − 2 N + 2 N ( N − 3 ) + 2 , {\displaystyle D={\frac {T-2N+2}{N(N-3)+2}},} whereas the ties T {\displaystyle T} are unidirectional (Wasserman & Faust 1994).
Tämä lasketaan binomikertoimen ( N 2 ) {\displaystyle {\tbinom {N}{2}}} avulla, josta saadaan tiheyden kaava D = 2 ( E − N + 1 ) N ( N − 3 ) + 2 . {\displaystyle D={\frac {2(E-N+1)}{N(N-3)+2}}.} Suuntaamattoman verkoston tapauksessa kaava muuntuu muotoon D = T − 2 N + 2 N ( N − 3 ) + 2 , {\displaystyle D={\frac {T-2N+2}{N(N-3)+2}},} (Wasserman & Faust 1994).
The nth Catalan number is given directly in terms of binomial coefficients by C n = 1 n + 1 ( 2 n n ) = ( 2 n ) ! ( n + 1 ) ! n ! = ∏ k = 2 n n + k k for  n ≥ 0. {\displaystyle C_{n}={\frac {1}{n+1}}{2n \choose n}={\frac {(2n)!}{(n+1)!\,n!}}=\prod \limits _{k=2}^{n}{\frac {n+k}{k}}\qquad {\text{for }}n\geq 0.} The first Catalan numbers for n = 0, 1, 2, 3, ... are 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, ... (sequence A000108 in the OEIS).
Luvut ovat nimetty belgialaisen matemaatikon Eugène Charles Catalanin mukaan. n:s Catalanin luku lasketaan binomikertoimilla seuraavasti: C n = 1 n + 1 ( 2 n n ) = ( 2 n ) ! ( n + 1 ) ! n !  kun  n ≥ 0. {\displaystyle C_{n}={\frac {1}{n+1}}{2n \choose n}={\frac {(2n)!}{(n+1)!\,n!}}\qquad {\mbox{ kun }}n\geq 0.} Ensimmäiset Catalanin luvut ovat (n arvoilla 0, 1, 2..): 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, … Tämä matematiikkaan liittyvä artikkeli on tynkä.
According to the theorem, it is possible to expand any power of x + y into a sum of the form ( x + y ) n = ( n 0 ) x n y 0 + ( n 1 ) x n − 1 y 1 + ( n 2 ) x n − 2 y 2 + ⋯ + ( n n − 1 ) x 1 y n − 1 + ( n n ) x 0 y n , {\displaystyle (x+y)^{n}={n \choose 0}x^{n}y^{0}+{n \choose 1}x^{n-1}y^{1}+{n \choose 2}x^{n-2}y^{2}+\cdots +{n \choose n-1}x^{1}y^{n-1}+{n \choose n}x^{0}y^{n},} where each ( n k ) {\displaystyle {\tbinom {n}{k}}} is a specific positive integer known as a binomial coefficient.
Lauseen mukaan on mahdollista kehittää mikä tahansa potenssi (x + y):n summaksi, joka on muotoa ( x + y ) n = ( n 0 ) x n y 0 + ( n 1 ) x n − 1 y 1 + ( n 2 ) x n − 2 y 2 + ⋯ + ( n n − 1 ) x 1 y n − 1 + ( n n ) x 0 y n , {\displaystyle (x+y)^{n}={n \choose 0}x^{n}y^{0}+{n \choose 1}x^{n-1}y^{1}+{n \choose 2}x^{n-2}y^{2}+\cdots +{n \choose n-1}x^{1}y^{n-1}+{n \choose n}x^{0}y^{n},} missä jokainen ( n k ) {\displaystyle {\tbinom {n}{k}}} on tietty positiivinen kokonaisluku, joka tunnetaan binomikertoimena.
How many English words do you know?
Test your English vocabulary size, and measure how many words you know.
Online Test