Traduzione per "be written to" a finlandese
Esempi di traduzione.
If you can't leave KDL it won't be written to the syslog file, though.
Jos et voi poistua KDL:stä, sitä ei kuitenkaan voida kirjoittaa järjestelmälokiin.
This information can also be written to Exchange by using contact synchronization (as described above).
Nämä tiedot voidaan kirjoittaa myös Exchangeen käyttämällä yhteystietojen synkronointia (edellä kuvatulla tavalla).
With user defined types, Len returns the size as it will be written to the file.
Käyttäjän määrittämissä tyypeissä Len-funktio palauttaa koon sellaisena kuin se kirjoitetaan tiedostoon.
The installer can be written to flash so it will automatically start when you reboot your machines.
Asennin voidaan kirjoittaa flash-muistiin, jolloin se käynnistyy automaattisesti kun laite käynnistetään uudelleen.
This information can also be written to Exchange by using contact synchronization (the third item in the preceding list).
Nämä tiedot voidaan kirjoittaa myös Exchangeen käyttämällä yhteystietojen synkronointia (kolmas kohta edellä olevassa luettelossa).
Data is not stored permanently in this field, but can be written to Custom Field 1 or 2 to be used by a subsequent filter.
Tietoja ei tallenneta kenttään pysyvästi, mutta ne voidaan kirjoittaa kohtaan Oma
Only in this case the additional memory will be written to the memory dump file (not the complete dump file), which allows further investigations.
Vain tässä tapauksessa lisämuisti kirjoitetaan muistidumppitiedostoon (ei täydelliseen dumppitiedostoon), josta asiaa voidaan tutkia lähemmin.
The information will be written to an ASCII file with some highlighting done using Escape sequences (using CSI - Control Sequence Introducer, decimal 155).
Tiedot kirjoitetaan ASCII-tiedostoon korostettuna Escape-jaksoilla (käyttäen CSI - Control Sequence Introducer -merkkiä, desimaali 155).
Also, if you configure SQL Server Services by using a domain account, the domain account password may be written to the Setup.iss file in a weakly encrypted format.
Vastaavasti jos määrität SQL Server -palvelut toimialuetilin avulla, toimialuetilin salasana saatetaan kirjoittaa Setup.iss-tiedostoon heikosti salatussa muodossa.
Expressed mathematically, this assumption may be written as ∫ Ω ′ L ( α A , α A , ν , ξ μ ) d 4 ξ − ∫ Ω L ( φ A , φ A , ν , x μ ) d 4 x = 0 {\displaystyle \int _{\Omega ^{\prime }}L\left(\alpha ^{A},{\alpha ^{A}}_{,\nu },\xi ^{\mu }\right)d^{4}\xi -\int _{\Omega }L\left(\varphi ^{A},{\varphi ^{A}}_{,\nu },x^{\mu }\right)d^{4}x=0} where the comma subscript indicates a partial derivative with respect to the coordinate(s) that follows the comma, e.g. φ A , σ = ∂ φ A ∂ x σ . {\displaystyle {\varphi ^{A}}_{,\sigma }={\frac {\partial \varphi ^{A}}{\partial x^{\sigma }}}\,.} Since ξ is a dummy variable of integration, and since the change in the boundary Ω is infinitesimal by assumption, the two integrals may be combined using the four-dimensional version of the divergence theorem into the following form ∫ Ω { + ∂ ∂ x σ } d 4 x = 0 . {\displaystyle \int _{\Omega }\left\{\left+{\frac {\partial }{\partial x^{\sigma }}}\left\right\}d^{4}x=0\,.} The difference in Lagrangians can be written to first-order in the infinitesimal variations as = ∂ L ∂ φ A δ ¯ φ A + ∂ L ∂ φ A , σ δ ¯ φ A , σ . {\displaystyle \left={\frac {\partial L}{\partial \varphi ^{A}}}{\bar {\delta }}\varphi ^{A}+{\frac {\partial L}{\partial {\varphi ^{A}}_{,\sigma }}}{\bar {\delta }}{\varphi ^{A}}_{,\sigma }\,.} However, because the variations are defined at the same point as described above, the variation and the derivative can be done in reverse order; they commute δ ¯ φ A , σ = δ ¯ ∂ φ A ∂ x σ = ∂ ∂ x σ ( δ ¯ φ A ) . {\displaystyle {\bar {\delta }}{\varphi ^{A}}_{,\sigma }={\bar {\delta }}{\frac {\partial \varphi ^{A}}{\partial x^{\sigma }}}={\frac {\partial }{\partial x^{\sigma }}}({\bar {\delta }}\varphi ^{A})\,.} Using the Euler–Lagrange field equations ∂ ∂ x σ ( ∂ L ∂ φ A , σ ) = ∂ L ∂ φ A {\displaystyle {\frac {\partial }{\partial x^{\sigma }}}\left({\frac {\partial L}{\partial {\varphi ^{A}}_{,\sigma }}}\right)={\frac {\partial L}{\partial \varphi ^{A}}}} the difference in Lagrangians can be written neatly as = ∂ ∂ x σ ( ∂ L ∂ φ A , σ ) δ ¯ φ A + ∂ L ∂ φ A , σ δ ¯ φ A , σ = ∂ ∂ x σ ( ∂ L ∂ φ A , σ δ ¯ φ A ) . {\displaystyle {\begin{aligned}&\left\\={}&{\frac {\partial }{\partial x^{\sigma }}}\left({\frac {\partial L}{\partial {\varphi ^{A}}_{,\sigma }}}\right){\bar {\delta }}\varphi ^{A}+{\frac {\partial L}{\partial {\varphi ^{A}}_{,\sigma }}}{\bar {\delta }}{\varphi ^{A}}_{,\sigma }={\frac {\partial }{\partial x^{\sigma }}}\left({\frac {\partial L}{\partial {\varphi ^{A}}_{,\sigma }}}{\bar {\delta }}\varphi ^{A}\right).\end{aligned}}} Thus, the change in the action can be written as ∫ Ω ∂ ∂ x σ { ∂ L ∂ φ A , σ δ ¯ φ A + L ( φ A , φ A , ν , x μ ) δ x σ } d 4 x = 0 . {\displaystyle \int _{\Omega }{\frac {\partial }{\partial x^{\sigma }}}\left\{{\frac {\partial L}{\partial {\varphi ^{A}}_{,\sigma }}}{\bar {\delta }}\varphi ^{A}+L\left(\varphi ^{A},{\varphi ^{A}}_{,\nu },x^{\mu }\right)\delta x^{\sigma }\right\}d^{4}x=0\,.} Since this holds for any region Ω, the integrand must be zero ∂ ∂ x σ { ∂ L ∂ φ A , σ δ ¯ φ A + L ( φ A , φ A , ν , x μ ) δ x σ } = 0 . {\displaystyle {\frac {\partial }{\partial x^{\sigma }}}\left\{{\frac {\partial L}{\partial {\varphi ^{A}}_{,\sigma }}}{\bar {\delta }}\varphi ^{A}+L\left(\varphi ^{A},{\varphi ^{A}}_{,\nu },x^{\mu }\right)\delta x^{\sigma }\right\}=0\,.} For any combination of the various symmetry transformations, the perturbation can be written δ x μ = ε X μ {\displaystyle \delta x^{\mu }=\varepsilon X^{\mu }} δ φ A = ε Ψ A = δ ¯ φ A + ε L X φ A {\displaystyle \delta \varphi ^{A}=\varepsilon \Psi ^{A}={\bar {\delta }}\varphi ^{A}+\varepsilon {\mathcal {L}}_{X}\varphi ^{A}} where L X φ A {\displaystyle {\mathcal {L}}_{X}\varphi ^{A}} is the Lie derivative of φA in the Xμ direction.
Matemaattisesti tämä oletus voidaan kirjoittaa seuraavasti: ∫ Ω ′ L ( α A , α A , ν , ξ μ ) d 4 ξ − ∫ Ω L ( ϕ A , ϕ A , ν , x μ ) d 4 x = 0 {\displaystyle \int _{\Omega ^{\prime }}L\left(\alpha ^{A},{\alpha ^{A}}_{,\nu },\xi ^{\mu }\right)d^{4}\xi -\int _{\Omega }L\left(\phi ^{A},{\phi ^{A}}_{,\nu },x^{\mu }\right)d^{4}x=0} missä muuttujien jälkeen yläpuolelle kirjoitetut pilkut tarkoittavat osittaisderivaattoja niiden koordinaattien suhteen, jotka seuraavat pilkun jälkeen, toisin sanoen ϕ A , σ = ∂ ϕ A ∂ x σ . {\displaystyle {\phi ^{A}}_{,\sigma }={\frac {\partial \phi ^{A}}{\partial x^{\sigma }}}\,.} Koska ξ on pelkkä integroimisvakio ja koska rajan Ω muutos oletettiin infinitesimaaliseksi, nämä kaksi integraalia voidaan yhdistää divergenssilauseen neliulotteisen version mukaisesti seuraavaan muotoon: ∫ Ω { + ∂ ∂ x σ } d 4 x = 0 . {\displaystyle \int _{\Omega }\left\{\left+{\frac {\partial }{\partial x^{\sigma }}}\left\right\}d^{4}x=0\,.} Lagrangen funktioiden erotus voidaan kirjoittaa ensimmäisessä kertaluvuissa infinitesimaalisilla muutoksilla: = ∂ L ∂ ϕ A δ ¯ ϕ A + ∂ L ∂ ϕ A , σ δ ¯ ϕ A , σ . {\displaystyle \left={\frac {\partial L}{\partial \phi ^{A}}}{\bar {\delta }}\phi ^{A}+{\frac {\partial L}{\partial {\phi ^{A}}_{,\sigma }}}{\bar {\delta }}{\phi ^{A}}_{,\sigma }\,.} Koska nämä muutokset kuitenkin on määritelty samassa edellä selityssä pisteessä, muutokset ja derivoinnit voidaan suorittaa myös päinvastaisessa järjestyksessä; ne kommutoivat: δ ¯ ϕ A , σ = δ ¯ ∂ ϕ A ∂ x σ = ∂ ∂ x σ ( δ ¯ ϕ A ) . {\displaystyle {\bar {\delta }}{\phi ^{A}}_{,\sigma }={\bar {\delta }}{\frac {\partial \phi ^{A}}{\partial x^{\sigma }}}={\frac {\partial }{\partial x^{\sigma }}}\left({\bar {\delta }}\phi ^{A}\right)\,.} Käyttämällä Eulerin-Lagrangen kenttäyhtälöä ∂ ∂ x σ ( ∂ L ∂ ϕ A , σ ) = ∂ L ∂ ϕ A {\displaystyle {\frac {\partial }{\partial x^{\sigma }}}\left({\frac {\partial L}{\partial {\phi ^{A}}_{,\sigma }}}\right)={\frac {\partial L}{\partial \phi ^{A}}}} Lagrangen funktioiden erotus voidaan kirjoittaa yksinkertaisesti muotoon = ∂ ∂ x σ ( ∂ L ∂ ϕ A , σ ) δ ¯ ϕ A + ∂ L ∂ ϕ A , σ δ ¯ ϕ A , σ = ∂ ∂ x σ ( ∂ L ∂ ϕ A , σ δ ¯ ϕ A ) . {\displaystyle \left={\frac {\partial }{\partial x^{\sigma }}}\left({\frac {\partial L}{\partial {\phi ^{A}}_{,\sigma }}}\right){\bar {\delta }}\phi ^{A}+{\frac {\partial L}{\partial {\phi ^{A}}_{,\sigma }}}{\bar {\delta }}{\phi ^{A}}_{,\sigma }={\frac {\partial }{\partial x^{\sigma }}}\left({\frac {\partial L}{\partial {\phi ^{A}}_{,\sigma }}}{\bar {\delta }}\phi ^{A}\right)\,.} Näin ollen aktion muutokseksi saadaan ∫ Ω ∂ ∂ x σ { ∂ L ∂ ϕ A , σ δ ¯ ϕ A + L ( ϕ A , ϕ A , ν , x μ ) δ x σ } d 4 x = 0 . {\displaystyle \int _{\Omega }{\frac {\partial }{\partial x^{\sigma }}}\left\{{\frac {\partial L}{\partial {\phi ^{A}}_{,\sigma }}}{\bar {\delta }}\phi ^{A}+L\left(\phi ^{A},{\phi ^{A}}_{,\nu },x^{\mu }\right)\delta x^{\sigma }\right\}d^{4}x=0\,.} Koska tämä pätee missä tahansa alueessa Ω, integrandin on oltava nolla ∂ ∂ x σ { ∂ L ∂ ϕ A , σ δ ¯ ϕ A + L ( ϕ A , ϕ A , ν , x μ ) δ x σ } = 0 . {\displaystyle {\frac {\partial }{\partial x^{\sigma }}}\left\{{\frac {\partial L}{\partial {\phi ^{A}}_{,\sigma }}}{\bar {\delta }}\phi ^{A}+L\left(\phi ^{A},{\phi ^{A}}_{,\nu },x^{\mu }\right)\delta x^{\sigma }\right\}=0\,.} .
How many English words do you know?
Test your English vocabulary size, and measure how many words you know.
Online Test